Gnucap
The Gnu Circuit Analysis Package
Users manual

Albert Davis

May 27, 2008

Contents

L1 What is1t7] o e e
1. EATtING] L e e

I1.5 Standard options| L e e e
1.6 Getting help, and the Gnucap user community]
IL7 How to contributel e

.8 ICENSINEG| . . . v o v v e

2

Command descriptions|

2.1 Command SUMMATY| . . . « .« « v v v v vt e e et e e e e e e e

2.2 ' commandl

4 CONTENTS
2.20 LOG command| e e e e e e 33
2.27 MARK command| e e e e e e e e e e e 34
2.28 MERGE command| e e e e e 35
2.29 MODIFY commandl . . . « .« v v v v e e e e e e e e e e e e e e e e e e e 35
230 NODESET commandl e 36
2.31 NOISE commandl e e e e e 36
2.32 0P command| 36
2.33 OPTIONS command|« . o v v v v o e e e e e e e e e e e e e 37
234 PARAMETER commandl . - - « « v v e e e e e e e e e 43
2.35 PAUSE commandl 45
2.36 PLOT command| e e e e e e e 45
2.37 PRINT commandl o v it e e e e e e e e e 46
P38 QUIT command] 51
2.39 SAVE command| e e e e e e 51
2.40 SENS command| e e e e e e e 51
241 STATUS commandl o 52
2.42 SWEEP commandl e e e e e 52
243 TEMPERATURE commandl . - - « « « « v oo e e e e e e e 53
2.44 TF command| e e e e e e 54
2.45 TITLE commandl o v v vt e e e e e e e e e e e e e e 54
2.46 _TRANSTENT command| v i e e e 54
2,47 UNFAULT command|« . o v v v v e e e e e e e e e e e e e e e e 56
2.48 UNMARK commandl v v vt e e e e e e e e e 57
2.49 WIDTH commandl 57

[3 Circuit description| 59
... 59
8.2 C: Capacitor]. e e e e e 60
8.3 Trans-capacitor| L L e 62

.. 62

3.5 E: Voltage Controlled Voltage Source|, 66
B.6F: Current Controlled Current Sourcel 66
3.7 G: Voltage Controlled Current Source|. 67
3.8 Voltage Controlled Capacitor| e 68
3.9 Voltage Controlled Admittance] L 69
13.10 Voltage Controlled Resistor| 69
13.11 H: Current Controlled Voltage Source|., 70
3.12 I: Independent Current Source|lo Lo e e e e 71
8.13 J: Junction Field-Effect Transistor] o 72
3.14 K: Coupled (Mutual) Inductors| L 72
3.15 L: Inductorl e e 72
.. 74
13.17 Q: Bipolar Junction Transistor|. 82
... 87

3.19 S: Voltage Controlled Switch| 88
8.20 T: Transmission Lanel o o Lo 89
8:21 U: Logic Device| 0 o o e 90

13.22 V: Independent Voltage Source| 93

CONTENTS

4.6 GENERATOR: Signal Generator time dependent value|
[T POLY. Dolynomial nonlincar (amsher THmCUOm - - « « « « « « o e v e e e e oo
[L3_ POSY. Dolynomial with HOBTEET POWETH .« « « « « « « « o v o e e e e e e e e et
[A.9 PULSE: Pulsed time dependent value]

4.11 SFFM: Frequency Modulation time dependent value|

[4.12 SIN: Sinusoidal time dependent value|. o oo oo
[{13 TANH: Hyperbolic tangent transfer function].
M.14_model TABLE: Tif a curvd

[6_TInstallation
0.1 Theeasy way|

5.2 eold eaSy Way|o e e e e e
I;il;i ll Il“]l !]g!s :“l’l !!!!l l;l ...
b.4 Details, custom compilation| oo

[6 Adding models|
6.1 Using the model compiler|

94
95
96

97

99
100
102
102
103
105
105
106
107
108
109
110
111
111

113
113
113
113
114

117
117

CONTENTS

Chapter 1

Introduction

1.1 What is it?

Gnucap is a general purpose mixed analog and digital circuit simulator. It performs nonlinear dc and
transient analyses, fourier analysis, and ac analysis linearized at an operating point. It is fully interactive
and command driven. It can also be run in batch mode. The output is produced as it simulates. Spice
compatible models for the MOSFET (levels 1-7) and diode are included in this release.

Since it is fully interactive, it is possible to make changes and re-simulate quickly. This makes Gnucap
ideal for experimenting with circuits as you might do in an iterative design or testing design principles as
you might do in a course on circuits.

In batch mode it is mostly Spice compatible, so it is often possible to use the same file for both Gnucap
and Spice.

The analog simulation is based on traditional nodal analysis with iteration by Newton’s method and LU
decomposition. An event queue and incremental matrix update speed up the solution considerably for large
circuits and provide some of the benefits of relaxation methods but without the drawbacks.

It also has digital devices for true mixed mode simulation. The digital devices may be implemented as
either analog subcircuits or as true digital models. The simulator will automatically determine which to
use. Networks of digital devices are simulated as digital, with no conversions to analog between gates. This
results in digital circuits being simulated faster than on a typical analog simulator, even with behavioral
models.

Gnucap also has a simple behavioral modeling language that allows simple behavioral descriptions of
most components including capacitors and inductors.

Gnucap is an ongoing research project. It is being released in a preliminary phase in hopes that it will
be useful and that others will use it as a thrust or base for their research.

1.2 Starting

To run this program interactively, type and enter the command: gnucap, from the command shell.

The prompt gnucap> shows that the program is in the command mode. You should enter a command.
Normally, the first command will be to build a circuit, or to get one from the disk. First time users should
turn to the tutorial section for further assistance.

To run in batch mode, use gnucap -b file. It will run that file then exit.

7

8 CHAPTER 1. INTRODUCTION

To load a file on starting, use gnucap file. This is equivalent to starting with no arguments, then using
the get command to load a file.

1.3 How to use this manual

The best approach is to read this chapter, then read the command summary at the beginning of chapter 2,
then run the examples in the tutorial section. Later, when you want to use the advanced features, go back
for more detail.

This manual is designed as a reference for users who are familiar with circuit design, and therefore does
not present information on circuit design but only on the use of this program to analyze such a design.
Likewise, it is not a text in modeling, although the models section does touch on it.

Throughout this manual, the following notation conventions are used:

e Typewriter font represents exactly what you type, or computer output.

e Underlined typewriter font is what you type, in a dialogue with the computer.

Command words are shown in mixed UPPER and lower case. The upper case part must be entered
exactly. The lower case part is optional, but if included must be spelled correctly.

Italics indicate that you should substitute the appropriate name or value.

Braces { } indicate optional parameters.

Ellipses (...) indicate that an entry may be repeated as many times as needed or desired.

1.4 Command structure

Commands are whole words, but usually you only have to type enough of the word to make it unique. The
first three letters will almost always work. In some cases less will do. The whole word is significant, if used,
and must be spelled correctly.

In files, commands must be prefixed with a dot (.). This is done for compatibility with other simulation
programs, such as SPICE.

Command options should be separated by commas or spaces. In some cases, the commas or spaces are
not necessary, but it is good practice to use them.

Upper and lower case are usually the same.

Usually options can be entered in any order. The exceptions to this are numeric parameters, where
the order determines their meaning, and command-like parameters, where they are executed in order. If
parameters conflict, the last takes precedence.

In general, standard numeric parameters, such as sweep limits, must be entered first, before any options.

Any line starting with * is considered a comment line, and is ignored. Anything on any line following a
quote is ignored. This is mainly intended for files.

This program supports abbreviated notation for floating point numeric entries. ‘K’ means kilo, or ‘e3’,
etc. ‘M’ and ‘m’ mean milli, not mega (for Spice compatibility). ‘Meg’ means mega. Of course, it will also
take the standard scientific notation. Letters following values, without spaces, are ignored.

T = Tera = el2
G = Giga = €9
Meg = Mega = €6

1.5. STANDARD OPTIONS 9

K = Kilo = e3
m = milli = e-3
u = micro = e-6

n = nano = e-9
p = pico = e-12
f = femto = e-15

1.5 Standard options

There are several options that are used in many commands that have a consistent meaning.
Quiet Suppress all unnecessary output, such as intermediate results, disk reads, activity indicators.
Echo Echo all disk reads to the console, as read from the disk.

Basic Format the output for compatibility with other software with primitive input parsers, such as C’s
scanf and Basic’s input statements. It forces exponential notation, instead of our standard abbreviated
notation. Any numbers that would ordinarily be printed without an exponent are not changed. It is
the default when the output of a command is directed to a file.

Pack Remove extra spaces from the output to save space at the expense of readability.
< Take the input from a file. The file name follows in the same line.

> Direct the output to a file. The file name follows. If the file already exists, it will ask permission to delete
the old one and replace it with a new one with the same name.

>> Direct the output to a file. If the file already exists, the new data is appended to it.
| Pipe the output to a program.

1.6 Getting help, and the Gnucap user community

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Probably the best source of current information is the web site: http://www.gnu.org/software/gnucap.
Here, you will find information on the latest developments, including other work related to gnucap, but not
strictly part of it.

There are four mailing lists of interest to Gnucap users.

bug-gnucap@gnu.org This list is for bug reports and discussion about bugs in gnucap.

help-gnucap@gnu.org This is a general user discussion list for gnucap. Discussions about the use of
gnucap, and sharing of ideas, models, and libraries, are all welcome here. Technical discussions should
be light weight and user oriented.

info-gnucap@gnu.org This list is for announcements about gnucap. It is a moderated list. All postings
come from the administrator.

gnucap-devel@gnu.org This list is for technical discussions relating to the development of gnucap. Tech-
nical discussions about simulator algorithms, modeling, and interfacing are all welcome here.

The web site contains the archives of these lists, and allows you to sign up for them.

10 CHAPTER 1. INTRODUCTION

1.7 How to contribute

There are a number of ways that you can contribute to help make Gnucap a better system. Perhaps the
most important way to contribute is to write high-quality code for solving new problems, and to make your
code freely available for others to use.

You can add significant value by developing models, even macro models, that can be distributed. Con-
verting Spice models, publicizing which ones already work, or documenting any features that Gnucap needs
to make it work, are all valuable contributions.

If you find Gnucap useful, consider providing additional funding to continue its development. Even
a modest amount of additional funding could make a significant difference in the amount of time that is
available for development and support.

If you cannot provide funding or contribute code, you can still help make Gnucap better and more reliable
by reporting any bugs you find and by offering suggestions for ways to improve Gnucap.

If you are a teacher, you are making a significant contribution simply by using free software in your
courses, and showing the students that they really do have a choice in software. You can further the
contribution by encouraging student software projects that can be released as free software. You can also
further the contribution by writing texts that use free software in the coursework, providing an alternative
to those texts that promote closed source commercial software.

If you are an academic researcher, you can contribute by releasing your own software under GPL, and
collaborating with others who do. You can help by using only open standards and avoiding proprietary
languages such as the modeling languages of some proprietary simulators.

If you are a commercial user, you can help by giving financial support or equipment to the developers.
Often, (as is the case with Gnucap), the principal developers are in the academic community, so by supporting
free software, you are also supporting academic research and providing financial support for students.

1.8 Licensing

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some
other Free Software Foundation software is covered by the GNU Library General Public License instead.)
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

1.8. LICENSING 11

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”"work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term ”modification”.) Each licensee is addressed as "you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

¢) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend

12 CHAPTER 1. INTRODUCTION

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange;
or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the ex-
ecutable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a

1.8. LICENSING 13

patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other circum-
stances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM ”AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-

14 CHAPTER 1. INTRODUCTION

GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

jone line to give the program’s name and a brief idea of what it does.; Copyright (C) 19yy jname of
author;,

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY:; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and ‘show
¢’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
”copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes
at compilers) written by James Hacker.

isignature of Ty Coonj, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

Chapter 2

Command descriptions

2.1 Command Summary

* Comment line.

! Pass a command to the operating system.

< Batch mode.

> Direct the “standard output” to a file.

AC Performs a small signal AC (frequency domain) analysis. Sweeps frequency.
ALARM Select points in circuit check against limits.

ALTER Change a value, node, etc. For very simple changes.
ATTACH Manually attach a compiled model, device, or function.
BUILD Build a new circuit or change an existing one.

CHDIR Change current directory.

CLEAR Delete the entire circuit, titles, etc.

DC Performs a nonlinear DC analysis, for determining transfer characteristics. Sweeps DC input or compo-
nent values.

DELETE Delete a part, or group of parts.

DETACH Manually detach a compiled model, device, or function.

DISTO SPICE command not implemented.

EDIT Edit the circuit description using your editor.

END Perform analyses in queue. New circuit follows. (Implemented incorrectly.)

EXIT Exits the program. (Same as quit.)

15

16 CHAPTER 2. COMMAND DESCRIPTIONS

FAULT Temporarily change a component.

FOURIER Transient analysis, with results in frequency domain. (Different from SPICE.)
GENERATOR View and set the transient analysis function generator.

GET Get a circuit from a disk file. Deletes old one first.

IC Set transient analysis initial conditions. (Not implemented.)

INCLUDE Include a file from disk. Add it the what is already in memory.

LIST List the circuit on the console.

LOG Save a record of commands.

MARK Mark this time point, so transient analysis will restart here.

MERGE Get a file from disk. Add it the what is already in memory.

MODIFY Change a value, node, etc. For very simple changes.

NODESET Preset node voltages, to assist convergence. (Not implemented.)

NOISE SPICE command not implemented.

0P Performs a nonlinear DC analysis, for determining quiescent operating conditions. Sweeps temperature.
OPTIONS View and set system options. (Same as set.)

PARAMETER Set or view parameters.

PAUSE Wait for key hit, while in batch mode.

PLOT Select points in circuit (and their range) to plot.

PRINT Select which points in the circuit to print as table.

QUIT Exits the program. (Same as exit.)

SAVE Save the circuit in a file.

SENS SPICE command not implemented.

STATUS Display resource usage, etc.

SWEEP Sweep a component. (Loop function.)

TEMP Set or view temperature.

TF SPICE command not implemented.

TITLE View and create the heading line for printouts and files.

TRANSIENT Performs a nonlinear transient (time domain) analysis. Sweeps time.
UNFAULT Undo faults.

UNMARK Undo mark. Release transient start point.

WIDTH Set output width.

2.2. ' COMMAND 17

2.2 ! command

2.2.1 Syntax

I command

2.2.2 Purpose

Run a program, or escape to a shell.

2.2.3 Comments

Any command typed here will be passed to the system for it to execute.
The bare command ! will spawn an interactive shell. Exiting the shell will return.

2.2.4 Examples

! 1s *.ckt Run the command 1s *.ckt as if it were a shell command.

I No arguments mean to spawn an interactive shell.

2.3 < command

2.3.1 Syntax

< filename
<< filename

2.3.2 Purpose

Run a simulation in batch mode. Gets the commands and circuit from a disk file. << clears the old circuit,
first.

2.3.3 Comments

You can invoke the batch mode directly from the command that starts the program. The first command
line argument is considered to be an argument for this command.

The file format is almost as you would type it on the keyboard. Commands must be prefixed with a dot,
and circuit elements can be entered directly, as if in build mode. This is compatible with Spice.

The log command makes a file as you work the program, but the format is not correct for this command.
To fix it, prefix commands with a dot, and remove the build commands.

Any line that starts with * a comment line.

Any line that starts with . (dot) is a command.

Any line that starts with a letter is a component to be added or changed.

A < command in the file transfers control to a new file. Files can be nested.

A bare < in the file (or the end of the file) gives it back to the console.

Unlike SPICE, commands are executed in order. This can result in some surprises when using some
SPICE files. SPICE queues up commands, then executes them in a predetermined order.

18 CHAPTER 2. COMMAND DESCRIPTIONS

2.3.4 Examples

< thisone.ckt Activates batch mode, from the file thisone.ckt, in the current directory.

< runit.bat Use the file runit.bat.

From the shell: on start up:

gnucap afile Start up the program. Start using the file afile.ckt in batch mode, as if you entered <
afile as the first command.

gnucap <afile Start up the program. Start using the file afile.ckt with commands as if you typed them
from the keyboard.

2.4 > command

2.4.1 Syntax
> file

>> file
>

2.4.2 Purpose

Saves a copy of all program output (except help) in a file.

2.4.3 Comments

> creates a new file for this output. If the file already exists, the old one is lost, and replaced by the new
one.

>> appends to an existing file, if it exists, otherwise it creates one.

A bare > closes the file.

2.4.4 Examples

> runl Save everything in a file runi in the current directory. If runi already exists, the old one is gone.

>> allof Save everything in a file allof. If allof already exists, it is kept, and the new data is added to
the end.

> Close the file. Stop saving.

2.5 AC command
2.5.1 Syntax

ac {options ...} start stop stepsize {options ...}

2.5.2 Purpose

Performs a small signal, steady state, AC analysis. Sweeps frequency.

2.5. AC COMMAND 19

2.5.3 Comments

The AC command does a linear analysis about an operating point. It is absolutely necessary to do an 0P
analysis first on any nonlinear circuit. Not doing this is the equivalent of testing it with the power off.

Three parameters are normally needed for an AC analysis: start frequency, stop frequency and step size,
in this order. If all of these are omitted, the values from the most recent AC analysis are used.

If only one frequency is specified, a single point analysis will be done.

If only a new step size is specified, the old start and stop are kept and only the step size is changed. This
is indicated by a keyword: by, times, decade or octave, or a symbol: + or *.

If the start frequency is zero, the program will still do an AC analysis. The actual frequency can be
considered to be the limit as the frequency approaches zero. It is, therefore, still possible to have a non-zero
phase angle, but delays are not shown because they may be infinite.

The nodes to look at must have been previously selected by the print or plot command. This is different
fron Spice.

2.5.4 Options

+ stepsize Linear sweep. Add stepsize to get the next step. Same as by.
* multiplier Log sweep. Multiply by multiplier to get the next step.

> file Send results of analysis to file.

>> file Append results to file.

by stepsize Linear sweep. Add stepsize to get the next step. Same as +.
decade steps Log sweep. Use steps steps per decade.

dtemp degrees Temperature offset, degrees C. Add this number to the temperature from the options com-
mand. This does not apply to nonlinear components, which will inherit the temperature from the
operating point analysis.

noplot Suppress plotting.

octave steps Log sweep. Use steps steps per octave.
plot Graphic output, when plotting is normally off.
quiet Suppress console output.

temperature degrees Temperature, degrees C. This does not apply to nonlinear components, which will
inherit the temperature from the operating point analysis.

times multiplier Log sweep. Multiply by multiplier to get the next step.

2.5.5 Examples
ac 10m A single point AC analysis at 10 mHz.
ac 1000 3000 100 Sweep from 1000 Hz to 3000 Hz in 100 Hz steps.

ac 1000 3000 Octave Sweep from 1000 Hz to 3000 Hz in octave steps. Since the sweep cannot end at 3000
Hz, in this case, the last step will really be 4000 Hz.

20 CHAPTER 2. COMMAND DESCRIPTIONS

ac by 250 Keep the same limits as before, but use 250 Hz steps. In this case, it means to sweep from 1000
to 3000 Hz, because that it what it was the last time.

ac 5000 1000 -250 You can sweep downward, if you want. Remember that the increment would be nega-
tive.

ac 20 20k *2 Double the frequency to get the next step.
ac 20k 20 *.5 You can do a log sweep downward, too. A multiplier of less than one moves it down.
ac Do the same AC sweep again.

ac >afile Save the results in the file afile. The file will look just like the screen. It will have all probe
points. It will be a plot, if plotting is enabled. It will have the numbers in abbreviated notation. (10
nanovolts is 10.n.)

2.6 ALARM command

2.6.1 Syntax

alarm

alarm mode points
alarm mode + points
alarm mode - points
alarm mode clear

2.6.2 Purpose

Select points in the circuit to check against user defined limits.

2.6.3 Comments

The ‘alarm’ command selects points in the circuit to check against limits. There is no output unless the
limits are exceeded. If the limits are exceeded a the value is printed.

There are separate lists of probe points for each type of analysis.

To list the points, use the bare command ‘alarm’.

Syntax for each point is parameter(node)(limits), parameter(componentlabel) (limits), or parameter(index)(limits).
Some require a dummy index.

For more information on the data available see the print command.

You can add to or delete from an existing list by prefixing with + or -. alarm ac + v(3) adds v(3) to
the existing set of AC probes. alarm ac - q(c5) removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

2.6.4 Examples

alarm ac vm(12)(0,5) vm(13)(-5,5) Check magnitude of the voltage at node 12 against a range of 0 to
5, and node 13 against a range of -5 to 5 for AC analysis. Print a warning when the limits are exceeded.

alarm op id(m*) (-100n,100n) Check current in all mosfets. In op analysis, print a warning for any that
are outside the range of -100 to +100 nanoamps. The range goes both positive and negative so it is
valid for both N and P channel fets.

2.7. ALTER COMMAND 21

alarm tran v(r83) (0,5) p(r83) (0,1u) Check the voltage and power of R83 in the next transient analysis.
The voltage range is 0 to 5. The power range is 0 to 1 microwatt. Print a warning when the range is
exceeded.

alarm List all the probes for all modes.
alarm dc Display the DC alarm list.

alarm ac clear Clear the AC list.

2.7 ALTER command

The alter command is an alias for modify.

2.8 ATTACH command

2.8.1 Syntax

attach
attach module-name

2.8.2 Purpose

Manually attach a “plugin”, compiled model, device, or function.

2.8.3 Comments

The bare command attach lists all plugins attached at run time.

The argument must be the name of a compiled “shared object” file containing one or more models,
devices, or functions.

If filename contains a slash (”/”), then it is interpreted as a (relative or absolute) pathname. Otherwise,
the dynamic linker searches for the library in the usual places for dynamic libraries.

In a future release, source files in C++, Verilog-AMS, or the old gnucap “.model” format will also be
accepted. They will be compiled and the resulting shared object file will be attached.

If you try to attach a file that is already loaded, it will be detached and re-attached.

If the file being attached defines a symbol (model, device, or function) that has a name that conflicts
with one already loaded, a warning will be printed, and the new one replaces the old. It is possible to replace
any model, device, or function this way, even the primitives like resistors.

If the file cannot be attached, a message will be printed with an explanation of why it cannot be attached.
These messages are generated by the loader, so they are system dependent.

The detach command removes it.

2.8.4 Examples

gnucap> attach ./my-noisy-resistor.so

. attaches the file “my-noisy-resistor.so” from the current directory.

22 CHAPTER 2. COMMAND DESCRIPTIONS

2.9 BUILD command

2.9.1 Syntax

build {line}

2.9.2 Purpose

Builds a new circuit, or replaces lines in an existing one.

2.9.3 Comments

Build Lets you enter the circuit from the keyboard. The prompt changes to > to show that the program is
in the build mode.

At this point, type in the circuit components in standard (Spice type) netlist format.

Component labels must be unique. If not, the old one is modified according to the new data, keeping old
values where no new ones were specified.

Ordinarily, components are added to the end of the list. To insert at a particular place, specify the label
to insert in front of. Example: Build R77 will cause new items to be added before R77, instead of at the
end.

In either case, components being changed or replaced do not change their location in the list.

If it is necessary to start over, delete all or clear will erase the entire circuit in memory.

To exit this mode, enter a blank line.

2.9.4 Examples

build Build a circuit. Add to the end of the list. This will add to the circuit without erasing anything. It
will continue until you exit or memory fills up.

b This is the same as the previous example. Only the first letter of the ‘Build’ is necessary.

build R33 Insert new items in front of R33.

2.10 CHDIR command

2.10.1 Syntax

chdir {path}
cd {path}

2.10.2 Purpose

Changes or displays the current directory name.

2.10.3 Comments

Change the current directory to that specified by path. See your system manual for complete syntax.
If no argument is given the current directory is displayed.

2.11. CLEAR COMMAND 23

2.10.4 Examples

cd ../ckt Change the current working directory to ../ckt.

cd Show the current working directory name.

2.11 CLEAR command

2.11.1 Syntax

clear

2.11.2 Purpose

Deletes the entire circuit, and blanks the title.

2.11.3 Comments

The entire word clear is required.
Clear is similar to, but a little more drastic than delete all.
After deleting anything, there is no way to get it back.
See also: delete command.

2.11.4 Examples

clear Delete the entire circuit.

2.12 DC command

2.12.1 Syntax

dc start stop stepsize {options ...}
dc label start stop stepsize {options ...}

2.12.2 Purpose

Performs a nonlinear DC steady state analysis, and sweeps the signal input, or a component value.

2.12.3 Comments

The nodes to look at must have been previously selected by the print or plot command.

If there are numeric arguments, without a part label, they represent a ramp from the generator function.
They are the start value, stop value and step size, in order. They are saved between commands, so no
arguments will repeat the previous sweep.

A single parameter represents a single input voltage. Two parameters instruct the computer to analyze
for those two points only.

In some cases, you will get one more step outside the specified range of inputs due to internal rounding
errors. The last input may be beyond the end point.

24 CHAPTER 2. COMMAND DESCRIPTIONS

This command also sets up a movable operating point for subsequent AC analysis, which can be helpful
in distortion analysis.

The program will sweep any simple component, including resistors, capacitors, and controlled sources.
SPICE sweeps only fixed sources (types V and I).

This command will sweep up to 4 components, nested.

2.12.4 Options

* multiplier Log sweep. Multiply the input by multiplier to get the next step. Do not pass zero volts!!
> file Send results of analysis to file.

>> file Append results to file.

by stepsize Linear sweep. Add stepsize to get the next step.

continue Use the last step of a OP, DC or Transient analysis as the first guess.

decade steps Log sweep. Use steps steps per decade.

dtemp degrees Temperature offset, degrees C. Add this number to the temperature from the options com-
mand.

loop Repeat the sweep, backwards.
bb

noplot Suppress plotting.

plot Graphic output, when plotting is normally off.

quiet Suppress console output.

reverse Sweep in the opposite direction.

temperature degrees Temperature, degrees C.

times multiplier Log sweep. Multiply the input by multiplier to get the next step. Do not pass zero volts!!
trace n Show extended information during solution. Must be followed by one of the following;:

off No extended trace information (default, override .opt)
warnings Show extended warnings
iterations Show every iteration.

verbose Show extended diagnostics.

2.13. DELETE COMMAND 25

2.12.5 Examples

dc

dc

dc

dc

dc

dc

dc

1 Do a single point DC signal simulation, with ‘1 volt’ input.

-10 15 1 Sweep the circuit input from -10 to +15 in steps of 1. (usually volts.) Do a DC transfer
simulation at each step.

With no parameters, it uses the same ones as the last time. In this case, from -10 to 15 in 1 volt steps.

20 0 -2 You can sweep downward, by asking for a negative increment. Sometimes, this will result in
better convergence, or even different results! (For example, in the case of a bi-stable circuit.)

Since the last time used the input option, go back one more to find what the sweep parameters were. In
this case, downward from 20 to 0 in steps of 2. (Because we did it 2 commands ago.)

-2 2 .1 loop After the sweep, do it again in the opposite direction. In this case, the sweep is -2 to +2
in steps of .1. After it gets to 42, it will go back, and sweep from +2 to -2 in steps of -.1. The plot
will be superimposed on the up sweep. This way, you can see hysteresis in the circuit.

temperature 75 Simulate at 75 degrees, this time. Since we didn’t specify new sweep parameters, do
the same as last time. (Without the loop.)

2.13 DELETE command

2.13.1 Syntax

delete label ...
delete all

2.13.2 Purpose

Remove a line, or a group of lines, from the circuit description.

2.13.3 Comments

To delete a part, by label, enter the label. (Example ‘DEL R15’.) Wildcards ‘*’ and ‘?’ are allowed, in
which case, all that match are deleted.

To delete the entire circuit, the entire word ALL must be entered. (Example ‘DEL ALL’.)
After deleting anything, there is usually no way to get it back, but if a fault had been applied (see fault

command) restore may have surprising results.

2.13.4 Examples

delete all Delete the entire circuit, but save the title.

del R12 Delete R12.

del R12 C3 Delete R12 and C3.

del R* Delete all resistors. (Also, any models and subcircuits starting with R.)

26 CHAPTER 2. COMMAND DESCRIPTIONS

2.14 DETACH command

2.14.1 Syntax

detach module-name

2.14.2 Purpose

Manually detach a “plugin”, compiled model, device, or function.

2.14.3 Comments

The argument must be the name of a compiled “shared object” file that was previously “attached” by the
attach command. The name string must be exactly the same as that used to attach it.

2.14.4 Examples

gnucap> detach ./my-noisy-resistor.so
.. detaches the file “./my-noisy-resistor.so”.
gnucap> detach /home/foo/circuit/my-noisy-resistor.so

.. won't work if it was attached as “./my-noisy-resistor.so” even if it is really the same file.

2.15 DISTO command

The Spice disto command is not implemented. Similar functionality is not available.

2.16 EDIT command

2.16.1 Syntax
edit
edit file
2.16.2 Purpose

Use your editor to change the circuit.

2.16.3 Comments

The edit command runs your editor on a copy of the circuit in memory, then reloads it.

Edit file runs your editor on the specified file.

If you are only changing a component value, the modify command may be easier to use.

The program uses the EDITOR environment variable to find the editor to use. The command fails if there
is no EDITOR defined.

2.17. END COMMAND 27

2.16.4 Examples

edit Brings up your editor on the circuit.

edit foo Edits the file foo in your current directory.

2.17 END command

When run in batch mode from the shell, the END command cleans up and exits the program.
In script mode (< command) it ends the script and returns to the program prompt.
In interactive mode it exits the program.

2.18 EXIT command

2.18.1 Syntax

exit

2.18.2 Purpose

Terminates the program.

2.18.3 Comments

‘Quit’ also works.
Be sure you have saved everything you want to!

2.19 FAULT command

2.19.1 Syntax

fault partlabel=value ...

2.19.2 Purpose

Temporarily change a component value.

2.19.3 Comments

This command quickly changes the value of a component, usually with the intention that you will not want
to save it.

If you apply this command to a nonlinear or otherwise strange part, it becomes ordinary and linear until
the fault is removed.

It is an error to fault a model call.

If several components have the same label, the fault value applies to all of them. (They will all have the
same value.)

The unfault command restores the old values.

28 CHAPTER 2. COMMAND DESCRIPTIONS

2.19.4 Example

fault R66=1k R66 now has a value of 1k, regardless of what it was before.
fault C12=220p Li=1u C12 is 220 pf and L1 is 1 uH, for now.

unfault Clears all faults. It is back to what it was before.

2.20 FOURIER command

2.20.1 Syntax

fourier start stop stepsize {options ...}

2.20.2 Purpose

Performs a nonlinear time domain (transient) analysis, but displays the results in the frequency domain.
Start, stop, and stepsize are frequencies.

2.20.3 Comments

This command is slightly different and more flexible than the SPICE counterpart. SPICE always gives you
the fundamental and 9 harmonics. Gnucap will do the same if you only specify one frequency. SPICE has
the probes on the same line. Gnucap requires you to specify the probes with the print command.

SPICE uses the last piece of a transient that was already done. Gnucap does its own transient analysis,
continuing from where the most recent one left off, and choosing the step size to match the Fourier Transform
to be done. Because of this the Gnucap Fourier analysis is much more accurate than SPICE.

The nodes to look at must have been previously selected by the print or plot command.

Three parameters are normally needed for a Fourier analysis: start frequency, stop frequency and step
size, in this order.

If the start frequency is omitted it is assumed to be 0. The two remaining parameters are stop and step,
such that stop > step.

If only one frequency is specified, it is assumed to be step size, which is equivalent to the fundamental
frequency. The start frequency is zero and the stop frequency is set according the harmonics option (from
the options command. The default is 9 harmonics.

If two frequencies are specified, they are stop and step. The order doesn’t matter since stop is always
larger than step.

Actually, this command does a nonlinear time domain analysis, then performs a Fourier transform on the
data to get the frequency data. The transient analysis parameters (start, stop, step) are determined by the
program as necessary to produce the desired spectral results. The internal time steps are selected to match
the Fourier points, so there is no interpolation done.

The underlying transient analysis begins where the previous one left off. If you specify the ”cold” option,
it begins at time = 0. Often repeating a run will improve the accuracy by giving more time for initial
transients to settle out.

See also: Transient command.

2.20. FOURIER COMMAND 29

2.20.4 Options

> file Send results of analysis to file.
>> file Append results to file.
cold Zero initial conditions. Cold start from power-up.

dtemp degrees Temperature offset, degrees C. Add this number to the temperature from the options com-
mand.

dtmin time The minimum internal time step, as a time. (Default = option dtmin Time cannot be resolved
closer than this.

dtratio number The minimum internal time step, as a ratio. (Default = option dtratio This is the
maximum number of internal time steps for every requested step.

quiet Suppress console output.

skip count Force at least count internal transient time steps for each one used.

temperature degrees Temperature, degrees C.

trace n Show extended information during solution. Must be followed by one of the following:

off No extended trace information (default, override .opt)
warnings Show extended warnings

alltime Show all accepted internal time steps.

rejected Show all internal time steps including rejected steps.
iterations Show every iteration.

verbose Show extended diagnostics.

2.20.5 Examples

fourier 1Meg Analyze the spectrum assuming a fundamental frequency of 1 mHz. Use the harmonics
option to determine how many harmonics (usually 9) to display.

fourier 40 20k 20 Analyze the spectrum from 40 Hz to 20 kHz in 20 Hz steps. This will result in a
transient analysis with 25 micro-second steps. (1 / 40k). It will run for .05 second. (1 / 20).

fourier 0 20k 20 Similar to the previous example, but show the DC and 20 Hz terms, also.

fourier No parameters mean use the same ones as the last time. In this case: from 0 to 20 kHz, in 20 Hz
steps.

fourier Skip 10 Do 10 transient steps internally for every step that is used. In this case it means to
internally step at 2.5 micro-second, or 10 steps for every one actually used.

fourier Cold Restart at time = 0. This will show the spectrum of the power-on transient.

30 CHAPTER 2. COMMAND DESCRIPTIONS

2.21 GENERATOR command

2.21.1 Syntax

generator {option-name=value ...}

2.21.2 Purpose

Sets up an input waveform for transient and Fourier analysis. Emulates a laboratory type function
generator.

2.21.3 Comments

This command sets up a singal source that is conceptually separate from the circuit. To use it, make the
value of a component ”generator(1)”, or substitute a scale factor for the parameter.

The SPICE style input functions also work, but are considered to be part of the circuit, instead of part
of the test equipment.

The parameters available are designed to emulate the controls on a function generator. There are actually
two generators here: sine wave and pulse. If both are on (by setting non-zero parameters) the sine wave is
modulated by the pulse, but either can be used alone.

Unless you change it, it is a unit-step function at time 0. The purpose of the command is to change it.

This command does not affect AC or DC analysis in any way. It is only for transient and Fourier
analysis. In AC analysis, the input signal is always a sine wave at the analysis frequency.

Typical usage is the name of the control followed by its value, or just plain Generator to display the
present values.

The actual time when switching takes place is ambiguous by one time step. If precise time switching is
necessary, use the Skip option on the transient analysis command, to force more resolution. This ambiguity
can usually be avoided by specifying finite rise and fall times.

2.21.4 Parameters

frequency The frequency of the sine wave generator for a transient analysis. The sine wave is modulated
by the pulse generator. A frequency of zero puts the pulse generator on line directly.

amplitude The overall amplitude of the pulse and sine wave. A scale factor. It applies to everything except
the offset and initial values.

phase The phase of the sine wave, at the instant it is first turned on.

max The amplitude of the pulse, when it is ‘on’. (During the width time) If the sine wave is on (frequency
not zero) this is the amplitude of the sine wave during the first part of the period. The maxz is scaled
by amplitude.

min The amplitude of the pulse, when it is ‘off’. (After it falls, but before the next period begins.) Although
we have called these min and maz, there is no requirement that maz be larger than min. If the sine
wave is on, this is its amplitude during the second part of the period. The min is scaled by amplitude.

offset The DC offset applied to the entire signal, at all times after the initial delay. The offset is not scaled
by amplitude.

2.22. GET COMMAND 31

initial The initial value of the pulse generator output. It will have this value starting at time 0, until
delay time has elapsed. It will never return to this value, unless you restart at time 0.

rise The rise time, or the time it takes to go from min to maz, or for the first rise, initial to max. The rise
is linear.

fall The fall time. (The time required to go from maz back to min.)
delay The waiting time before the first rise.

width The length of time the output of the generator has the value maz. A width of zero means that the
output remains high for the remainder of the period. If you really want a width of zero, use a very
small number, less than the step size.

period The time for repetition of the pulse. It must be greater than the sum of rise + fall + width. A
period of zero means that the signal is not periodic and so will not repeat.

2.21.5 Examples

The generator command ...

gen Display the present settings.

gen freq=1k Sets the sine wave to 1 kHz. All other parameters are as they were before.

gen freq=0 Turns off the sine wave, leaving only the pulse.

gen ampl=0 Sets the amplitude to zero, which means the circuit has no input, except for possibly a DC
offset.

gen period=.001 freq=1m Sets the period back to 1 millisecond. Applies 1 mHz modulation to the pulse,
resulting in a pulsed sine wave. In this case, a 100 microsecond 10 volt burst, repeating every millisec-
ond. Between bursts, you will get 2.5 volts, with reversed phase. The old values, in this case from 2
lines back (above) are kept. (Ampl 5 Rise 10u Fall 10u ...)

gen freq=60 phase=90 delay=.1 The sine wave frequency is 60 Hertz. Its phase is 90 degrees when it
turns on, at time .1 seconds. It turns on sharply at the peak.

A component using it ...

V12 1 0 generator(1) Use the generator as the circuit input through this voltage source. The DC and
AC values are 0.

V12 1 O tran generator(l) ac 10 dc 5 Same as before, except that the AC value is 10 and DC value is
5.

Rinput 1 O tran generator(l) Unlike SPICE, the functions can be used on other components. The
resistance varies in time according to the ”generator”.

2.22 GET command

2.22.1 Syntax

get filename

32 CHAPTER 2. COMMAND DESCRIPTIONS

2.22.2 Purpose

Gets an existing circuit file, after clearing memory.

2.22.3 Comments

The first comment line of the file being read is taken as the ‘title’. See the title command.

Comments in the circuit file are stored, unless they start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This means that variables and options are changed, but
simulation commands are not actually done. As an example, the options command is actually performed,
since it only sets up variables. The ac card is not performed, but its parameters are stored, so that a plain
ac command will perform the analysis specified in the file.

Any circuit already in memory will be erased before loading the new circuit.

2.22.4 Examples

get amp.ckt Get the circuit file amp.ckt from the current directory.
get /usr/foo/ckt/amp.ckt Get the file amp.ckt from the /usr/foo/ckt directory.

get npn.mod Get the file npn.mod.

2.23 IC command

The Spice IC command is not implemented. Similar functionality is not available.

2.24 INCLUDE command

2.24.1 Syntax

include filename

2.24.2 Purpose

Gets an existing circuit or model file, adds it to what is already in memory.

2.24.3 Comments

The first comment line of the file being read is the new title, and replaces the existing title.
Comments in the circuit file are stored, unless they start with *+ in which case they are thrown away.
‘Dot cards’ are interpreted the same as they would have been had the file been simply inserted in place.
This means they are used as presets if this file is included from a “get”, or run if it is included from a “<”.

2.24.4 Examples

include npn.mod Include the file npn.mod.

2.25. LIST COMMAND 33

2.25 LIST command

2.25.1 Syntax

list {label ...}
list {label - label}

2.25.2 Purpose

Lists the circuit in memory.

2.25.3 Comments

Plain 1ist will list the whole circuit on the console.

List with a component label asks for that one only. Wildcards are supported: ? matches any character,
once. * matches zero or more of any character.

For several components, list them.

For a range, specify two labels separated by a dash.

2.25.4 Examples

list List the entire circuit to the console.

list R11 Show the component R11.

list D12 - C5 List the part of the netlist from M12 to C5, inclusive. D12 must be before C5 in the list.

list D* Cx List all diodes and capacitors.

2.26 LOG command

2.26.1 Syntax

log file
log >> file
log

2.26.2 Purpose

Saves a copy of your keyboard entries in a file.

2.26.3 Comments

The ‘>>’ option appends to an existing file, if it exists, otherwise it creates one.

Files can be nested. If you open one while another is already open, both will contain all the information.

A bare log closes the file. Because of this, the last line of this file is always log. Ordinarily, this will not
be of any consequence, but if a log file is open when you use this file as command input, this will close it.
If more than one log file is open, they will be closed in the reverse of the order in which they were opened,
maintaining nesting.

See also: >’ and ‘<’ commands.

34 CHAPTER 2. COMMAND DESCRIPTIONS

2.26.4 Bugs

The file is an exact copy of what you type, so it is suitable for gnucap <file from the shell. It is NOT
suitable for the < command in gnucap or the Spice-like mode gnucap file without <.

2.26.5 Examples

log today Save the commands in a file today in the current directory. If today already exists, the old one
is gone.

log >> doit Save the commands in a file doit. If doit already exists, it is kept, and the new data is added
to the end.

log runit.bat Use the file runit.bat.

log Close the file. Stop saving.

2.27 MARK command

2.27.1 Syntax

mark

2.27.2 Purpose

Remember circuit voltages and currents.

2.27.3 Comments

After the mark command, the transient and fourier analysis will continue from the values that were kept
by the mark command, instead of progressing every time.
This allows reruns from the same starting point, which may be at any time, not necessarily 0.

2.27.4 Examples

transient 0 1 .01 A transient analysis starting at zero, running until 1 second, with step size .01 seconds.
After this run, the clock is at 1 second.

mark Remember the time, voltages, currents, etc.

transient Another transient analysis. It continues from 1 second, to 2 seconds. (It spans 1 second, as
before.) This command was not affected by the mark command.

transient This will do exactly the same as the last one. From 1 second to 2 seconds. If it were not for
mark, it would have started from 2 seconds.

transient 1.5 .001 Try again with smaller steps. Again, it starts at 1 second.
unmark Release the effect of mark.
transient Exactly the same as the last time, as if we didn’t unmark. (1 to 1.5 seconds.)

transient This one continues from where the last one left off: at 1.5 seconds. From now on, time will move
forward.

2.28. MERGE COMMAND 35

2.28 MERGE command

2.28.1 Syntax

merge filename

2.28.2 Purpose

Gets an existing circuit file, without clearing memory.

2.28.3 Comments

The first comment line of the file being read is the new title, and replaces the existing title.

Comments in the circuit file are stored, unless they start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This means that variables and options are changed, but
simulation commands are not actually done. As an example, the options command is actually performed,
since it only sets up variables. The ac command is not performed, but its parameters are stored, so that a
plain ac command will perform the analysis specified in the file.

Any circuit already in memory is kept. New elements with duplicate labels replace the old ones. New
elements that are not duplicates are added to the end of the list, as if the files were appended.

2.28.4 Examples

merge amp.ckt Get the circuit file amp.ckt from the current directory. Use it to change the circuit in
memory.

merge npn.mod Include the file npn.mod.

2.29 MODIFY command

2.29.1 Syntax

modify partlabel=value ...

2.29.2 Purpose

Quickly change a component value.

2.29.3 Comments

This command quickly changes the value of a component. It is restricted to simply changing the value.
If several components have the same label or if wildcard characters are used, all are changed.

2.29.4 Example
modify R66=1k R66 now has a value of 1k, regardless of what it was before.

modify C12=220p Li=1u C12 is 220 pf and L1 is 1 uH.

mod Rx=22k All resistors are now 22k.

36 CHAPTER 2. COMMAND DESCRIPTIONS

2.30 NODESET command

The Spice nodeset command is not implemented. Similar functionality is not available.

2.31 NOISE command

The Spice noise command is not implemented. Similar functionality is not available.

2.32 (0P command

2.32.1 Syntax

op start stop stepsize {options ...}

2.32.2 Purpose

Performs a nonlinear DC steady state analysis, with no input. If a temperature range is given, it sweeps the
temperature.

2.32.3 Comments

There are substantial extensions beyond the capabilities of the SPICE op command.

If there are numeric arguments, they represent a temperature sweep. They are the start and stop
temperatures in degrees Celsius, and the step size, in order. They are saved between commands, so no
arguments will repeat the previous sweep.

This command will use the op probe set, instead of automatically printing all nodes and source currents,
so you must do "print op” before running op. We did it this way because we believe that printing
everything all the time is usually unnecessary clutter. All of the information available from SPICE and more
is available here. See the print command and the device descriptions for more details.

A single parameter represents a single temperature. Two parameters instruct the computer to analyze
for those two points only.

This command also sets up the quiescent point for subsequent AC analysis. It is necessary to do this for
nonlinear circuits. The last step in the sweep determines the quiescent point for the AC analysis.

2.32.4 Options

* multiplier Log sweep. Multiply the input by multiplier to get the next step. Do not pass zero volts!!
> file Send results of analysis to file.

>> file Append results to file.

by stepsize Linear sweep. Add stepsize to get the next step.

continue Use the last step of a OP, DC or Transient analysis as the first guess.

decade steps Log sweep. Use steps steps per decade.

dtemp degrees Temperature offset, degrees C. Add this number to the temperature from the options com-
mand.

2.33. OPTIONS COMMAND 37

loop Repeat the sweep, backwards.
bb

noplot Suppress plotting.

plot Graphic output, when plotting is normally off.

quiet Suppress console output.

reverse Sweep in the opposite direction.

temperature degrees Temperature, degrees C.

trace n Show extended information during solution. Must be followed by one of the following:

off No extended trace information (default, override .opt)
warnings Show extended warnings
iterations Show every iteration.

verbose Show extended diagnostics.

2.32.5 Examples

op 27 Do a DC operating point simulation at temperature 27 degrees Celsius.

op -50 200 25 Sweep the temperature from -50 to 200 in 25 degree steps. Do a DC operating point
simulation at each step.

op With no parameters, it uses the same ones as the last time. In this case, from -50 to 200 in 25 degree
steps.

op 200 -50 -25 You can sweep downward, by asking for a negative increment.
op Input 2.3 Apply an input to the circuit of 2.3 volts. This overrides the default of no input.
op TEmperature 75 Simulate at 75 degrees, this time. This isn’t remembered for next time.

op Since the last time used the 1TEmperature option, go back one more to find what the sweep parameters
were. In this case, downward from 200 to -50 in 25 degree steps. (Because we did it 3 commands ago.)

2.33 O0PTIONS command

2.33.1 Syntax

options
options option-name value ...

2.33.2 Purpose

Sets options, iteration parameters, global data.

38 CHAPTER 2. COMMAND DESCRIPTIONS

2.33.3 Comments

Typical usage is the name of the item to set followed by the value.

The bare command ‘options’ displays the values.

These options control the simulation by specifying how to handle marginal circumstances, how long to
wait for convergence, etc.

Most of the SPICE options are supported, more have been added.

2.33.4 Parameters

acct Turns on accounting. When enabled, print the CPU time used after each command, and a summary
on exit in batch more. This does not affect accounting done by the status command.

noacct Turns off accounting. (Not in SPICE.)

list Turns on echo of files read by get and merge commands, and in batch mode. (SPICE option accepted
but not implemented.)

nolist Turns off list option. (Not in SPICE.)
mod Enable printout of model parameters. (Accepted, but not implemented, to complement nomod.)
nomod Suppress printout of model parameters. (SPICE option accepted but not implemented.)

page Enable page ejects at the beginning of simulation runs. (Accepted, but not implemented, to comple-
ment nopage.)

nopage Turn off page ejects. (SPICE option accepted but not implemented.)

node Enable printing of the node table. (SPICE option accepted but not implemented.)

nonode Disable printing of the node table. (Accepted, but not implemented, to complement NODE.)
opts Enable printing of option values on every options command.

noopts Disable automatic printing of option values. Option values are only printed on a null options
command.

gmin = z Minimum conductance allowed by the program. (Default = le-12 or 1 picomho.) Every node
must have a net minimum conductance of GMIN to ground. If effective open circuits are found during
the solution process (leading to a singular matrix) a conductance of GMIN is forced to ground, after
printing an ”open circuit” error message.

reltol = z Relative error tolerance allowed. (Default =.001 or .1%.) If the ratio of successive values in
iteration are within RELTOL of one, this value is considered to have converged.

abstol = z Absolute error tolerance allowed. (Default = le-12) If successive values in iteration are within
ABSTOL of each other, this value is considered to have converged.

vntol = x Absolute voltage error required to force model re-evaluation. (Default = le-12 or 1 microvolt.)
If the voltage at the terminals of a model is within VNTOL of the previous iteration, the model is not
re-evaluated. The old values are used directly.

trtol = z Transient error “tolerance”. (Default = 7.) This parameter is an estimate of the factor by which
the program overestimates the actual truncation error.

2.33.

OPTIONS COMMAND 39

chgtol = z Charge tolerance. (Default = le-14) It is used in step size control in transient analysis.

pivtol = z Pivot tolerance. (Default = le-13) SPICE option accepted but not implemented.

pivrel = z Pivot ratio. (Default = le-3) SPICE option accepted but not implemented.

numdgt = z Number of significant digits to print for analysis results. (Default = 5.) It is silently limited to

tnom

itll

itl2

itl3

itl4

itlb

itlé

itl7

itl8

3 to 20.

= z Nominal temperature. (Default = 27° C.) All components have their nominal value at this
temperature.

= z DC iteration limit. (Default = 100.) Sets the maximum number of iterations in a DC, OP, or
initial transient analysis allowed before stopping and reporting that it did not converge.

= z DC transfer curve iteration limit. (Default = 50.) SPICE option accepted but not implemented.
Use itl1 instead.

= z Lower transient iteration limit. (Default = 6.) If the number of iterations is more than it13 the
step size is limited by trstephold. Otherwise, it can grow by trstepgrow.

= z Upper transient iteration limit. (Default = 20.) Sets the maximum number of iterations on a step
in transient analysis. If the circuit fails to converge in this many iterations the step size is reduced (by
option trstepshrink), time is backed up, and the calculation is repeated.

= z Transient analysis total iteration limit. (Default = 5000.) SPICE option accepted but not imple-
mented. Actual behavior is the same as it15 = 0, in SPICE, which omits this test.

= z Source stepping iteration limit. (Default = 0.) SPICE option accepted but not implemented.
Source stepping is not available.

= 2 Worst case analysis iteration limit. (Default = 1.) Sets the maximum number of iterations for the
individual element trials in a DC or bias worst case analysis. If more iterations than this are necessary,
the program silently goes on to the next step, as if nothing was wrong, which is usually the case.

= z Convergence diagnostic iteration threshold. (Default = 100.) If the iteration count on a step
exceeds 1t18 diagnostic messages are printed in an attempt to aid the user in solving the convergence
problem.

cptime = z Total CPU job time limit. (Default = 30000.) SPICE option accepted but not implemented.

There is no limit imposed.

limtim = z CPU time reserved for plotting. (Default = 2.) SPICE option accepted but not implemented.

limpts = z Max number of points printed. (Default = 201.) SPICE option accepted but not implemented.

lvlcod = z Matrix solution and allocation method. (Default = 2, generate machine language.) SPICE

option not implemented.

1lvltim = z Time step control method. (Default = 2, truncation error.) SPICE option not implemented.

method = z Differentiation method. (Default = TRAPezoidal.) (Incorrectly called “integration” method in

SPICE.) Possible values are:

euler backward Euler, unless forced to other

40 CHAPTER 2. COMMAND DESCRIPTIONS

euleronly backward Euler only
trap usually trap, but Euler where better

traponly always trapezoid

defl = z MOSFET default channel length in meters. (Default = 100u.)

defw = z MOSFET default channel width in meters. (Default = 100u.)

defad = z MOSFET default drain diffusion area in square meters. (Default = 0.)
defas = x MOSFET default source diffusion area in square meters. (Default = 0.)

dampmax = z Normal Newton damping factor. (Default = 1.) Sets the damping factor for iteration by
damped Newton’s method, used when all is well. It must be between 0 and 1, as close to 1 as possible
and still achieve convergence. The useful range is from .9 to 1. Setting dampmax too low will probably
cause convergence to a nonsense result.

dampmin = z Newton damping factor in problem cases. (Default = .5) Sets the damping factor for iteration
by damped Newton’s method, used when there are problems. It must be between 0 and 1, and is
usually set somewhat less than dampmax. The useful range is from .5 to .9. Setting it lower than .5
may cause convergence to a nonsense result. Aside from that, a lower value (but less than dampmax)
tends to improve robustness at the expense of convergence speed.

dampstrategy = z Damping strategy. (Default = 0) The actual damping factor to use is determined by
heuristics. Normally the damping factor is dampmax. It is reduced to dampmin when certain conditions
occur, then it drifts back up on subsequent iterations. This parameter turns the various heuristics on
or off. The number to use is the sum of the following flags.

1 the second iteration on any voltage or time step. (usually helps robustness, but always increases
iteration count.)

2 if the voltage at any nonlinear node exceeds the range determined by vmin, vmax, and limit.
(usually not desirable.)

4 if any device limiting algorithm is activated. (usually not desirable.)
10 when any device crosses a region boundary. (usually desirable and has little cost.)

20 when a FET or BJT is reversed. (usually helps robustness. sometimes increases iteration count.)

floor = z Effective zero value. (Default = le-21) Results values less than floor are shown as zero. Other
small numbers are rounded to the nearest floor.

vfloor = z Effective zero value for voltage probes. (Default = le-15) Results values less than vfloor are
shown as zero. Other small numbers are rounded to the nearest vfloor.

roundofftol = z Numeric rounding tolerance. (Default = le-13) Some internal calculations can result in
cancellations, with a result near zero even though the operands are large. The number is converted to
zero if it is less than roundofftol*theoperand.

temperature = z Simulation temperature. (Default = 27° C.) Sets the ambient temperature, in degrees
Celsius. This is the temperature at which the simulation takes place, unless changed by some other
command.

2.33. OPTIONS COMMAND 41

short = z Resistance of voltage source or short. (Default = le-7 or 10 ufQ.) Sets the default resistance of
voltage sources. In some cases, inductors are replaced by resistors, if so, this is the value. It is also the
resistance used to replace short circuits anywhere they are not allowed and the program finds one.

in = z Input width. (Default = 80.) Sets the last column read from each line of input. Columns past this
are ignored. This option is present only for SPICE compatibility, through the width command, which
is an alias for options.

out = z Output width. (Default = 80.) Sets the output print width, for tables and character graphics.
ydivisions = z Y axis divisions. (Default = 4) Sets the number of divisions on the Y axis for plotting.

phase = z Phase units. (Default = degrees) Valid values are degrees and radians. Selects which units
are used for printing phase in AC analysis.

order = z Equation ordering. (Default = auto.) Determines how external node numbers are mapped to
internal numbers. The values are forward, reverse, and auto.

mode = z Simulation mode selection. (Default = mixed.) Values are analog, digital, and mixed. In
analog mode, logic elements (type U) are replaced by their subcircuits as if they were type X. In digital
mode, logic elements are simulated as digital regardless of whether the signals are proper or not, as
in traditional mixed-mode simulation. In mixed mode, logic elements may be simulated as analog or
digital depending on the signals present.

transits = z Mixed mode transition count. (Default = 2) Sets the number of “good” transitions for a
supposedly digital signal to be accepted as digital.

bypass Bypass model evaluation if appropriate. If the last two iterations indicate that an element is con-
verged or dormant, do not evaluate it but use its old values directly. (Default)

nobypass Do not bypass model evaluation.

incmode Incrementally update the matrix. Instead of rebuilding the matrix on every iteration, keep as much
of the old matrix as possible and make incremental changes. (Default)

noincmode Do not incrementally update the matrix. This eliminates a possible cause of roundoff error at
the expense of a slower simulation.

lcbypass Bypass evaluation of linear inductors and capacitors when possible. When set, they are evaluated
only on the first iteration of a time step. (Default)

nolcbypass Do not bypass linear capacitor and inductors. Evaluate on every iteration.

lubypass Bypass parts of LU decomposition if appropriate. If only a few elements of the matrix were
changed solve only those parts of the LU matrix that depend on them. (Default)

nolubypass Do not bypass parts of LU decomposition. Solve the entire LU matrix whenever a matrix
solution is called for regardless of whether it is actually needed.

fbbypass Skip matrix solution the last iteration. In theory, it reduces accuracy slightly, but specified
tolerances will still be met. Time saving can be significant. (Default)

nofbbypass Do not skip the matrix solution on the last iteration.

42 CHAPTER 2. COMMAND DESCRIPTIONS

traceload Use a queue to only load changed elements to the matrix. This results in faster loading and has
no known drawbacks. (Default)

notraceload Do not use a queue to only load changed elements to the matrix. Instead, load all elements,
even if they are unchanged or zero. This is always slower, and is forced if "noincmode”.

itermin = z Number of extra iterations after convergence. (Default = 1) After convergence tolerances
are met, do itermin extra iterations to be sure. This provides protection against false indication of
convergence. Setting itermin = 0 is equivalent to SPICE, with improved simulation speed.

vmin = z Initial negative node voltage limit. (Default = -5) All node voltages may be limited to —z to aid
in convergence and prevent numeric overflow. This is intended as a convergence aid only. It may or
may not help. This number is used as a starting point. It is adjusted as the simulation progresses.

vmax = z Initial positive node voltage limit. (Default = 5) All node voltages may be limited to +x to aid
in convergence and prevent numeric overflow. This is intended as a convergence aid only. It may or
may not help. This number is used as a starting point. It is adjusted as the simulation progresses.

dtmin = z Minimum time step. (Default = le-12.) The smallest internal time step in transient analysis.
The transient command dtmin option and the dtratio option override it if it is bigger.

dtratio = z The ratio between minimum and maximum time step. (Default = 1e9).

rstray Include series resistance in device models. This creates internal nodes and results in a significant
speed and memory penalty. It also makes convergence characteristics worse. (Default = true)

norstray Do not include series resistance in device models. This results in faster simulations and better
numerical accuracy at the expense of model accuracy. Differences between rstray and norstray have
been observed to be insignificant most of the time. Some popular commercial versions of SPICE do
not implement series resistance at all, so norstray may be more consistent with other simulators.

cstray Include capacitance in device models. This may create internal nodes and result in a significant
speed and memory penalty. It also may make convergence characteristics worse. (Default)

nocstray Do not include capacitance in device models. This results in faster simulations and better numer-
ical accuracy at the expense of model accuracy. Differences between cstray and nocstray are usually
significant, since often the strays are the dominant reactive elements.

harmonics = 2 Harmonics in Fourier analysis. (Default = 9) The number of harmonics to display in a
Fourier analysis, unless specified otherwise.

trstepgrow = z The maximum internal step size growth in transient analysis. Default = 199, which allows
arbitrary changes in step size.

trstephold = z The maximum internal step size growth in transient analysis, when the iteration count
exceeds it13 but still converges. (Default = 1¢99)

trstepshrink = z The amount to decrease the transient step size by when convergence fails. (Default =
2)

trreject = z Transient error rejection threshold. (Default = .5) Controls how bad the truncation error
must be to reject a time step. A value of .5 means that if the step reqested is smaller than .5 times
the step size used, the current step will be rejected. If the new step is .8 times the old step size it will
be adjusted but the step just calculated will not be rejected.

2.34. PARAMETER COMMAND 43

quitconvfail Quit on convergence failure in transient analysis. Do not adjust time step, just stop. (Default
= false)

noquitconvfail Do not quit on convergence failure in transient analysis. Instead, try to adjust time step
and try again. If even the smallest time step still fails, conntinue simulating and accept the bad step.
(Default)

recursion = z Limit recursion in expresion evaluation to x levels. (Default = 20) The purpose is to trap
infinite recursion in user expressions.

edit Enable command line editing. (Default)

noedit Disable command line editing.

2.33.5 Examples

options Display the present settings.

options it11=50 Allows 50 iterations in a dc or op analysis.

2.34 PARAMETER command

2.34.1 Syntax

param
parameter

param param-name value ...
parameter param-name value ...

2.34.2 Purpose

Set and view parameters.

2.34.3 Comments

The bare command param lists all defined parameters and their values.

The value may be a number or the name of another parameter. If it is another parameter, eventually it
must resolve to a number. This depth can be set by the option recursion which has a default value of 20.
The depth is limited to prevent infinite recursion.

In a future release, full expressions will be accepted, but this is not working yet.

All component values, numeric lists such as in PWL, component and model parameters can be defined
using param.

If the same parameter is set more than once, the most recent one prevails. All instances of the parameter
will take the new value.

When a parameter name is used as a value, it may be enclosed by quotes or curly braces.

44

2.34.4 Examples

Suppose we have this circuit:

Vpower (vcc 0) dc vcce

Vin (in 0) generator
Q1 (c b e) small

Rc (vce ¢) rc

Re (e 0) re

Rbl (vcc b) rbl

Rb2 (b 0) rb2

.model small npn (bf=beta)

CHAPTER 2. COMMAND DESCRIPTIONS

If I try to simulate it now, it will not be very useful. We need to give our circuit some values:

gnucap> param vcc=10 beta=100 rc=10k re=1k rbl=100k rb2=rc

Let’s see what it does:

gnucap> print op v(nodes)
gnucap> op
v(b) v(c)

27. 0.8941 8.3513

What happens if I change beta?

gnucap> param beta=200
gnucap> op
v(b) v(c)

27. 0.90128 8.2822

v(e)
0.16652

v(e)

0.17264

v(in)
0.

v(in)
0.

v(vce)
10.

v(vce)
10.

Not much